21 research outputs found

    Persistence of Zero Sets

    Full text link
    We study robust properties of zero sets of continuous maps f:XRnf:X\to\mathbb{R}^n. Formally, we analyze the family Zr(f)={g1(0):gf<r}Z_r(f)=\{g^{-1}(0):\,\,\|g-f\|<r\} of all zero sets of all continuous maps gg closer to ff than rr in the max-norm. The fundamental geometric property of Zr(f)Z_r(f) is that all its zero sets lie outside of A:={x:f(x)r}A:=\{x:\,|f(x)|\ge r\}. We claim that once the space AA is fixed, Zr(f)Z_r(f) is \emph{fully} determined by an element of a so-called cohomotopy group which---by a recent result---is computable whenever the dimension of XX is at most 2n32n-3. More explicitly, the element is a homotopy class of a map from AA or X/AX/A into a sphere. By considering all r>0r>0 simultaneously, the pointed cohomotopy groups form a persistence module---a structure leading to the persistence diagrams as in the case of \emph{persistent homology} or \emph{well groups}. Eventually, we get a descriptor of persistent robust properties of zero sets that has better descriptive power (Theorem A) and better computability status (Theorem B) than the established well diagrams. Moreover, if we endow every point of each zero set with gradients of the perturbation, the robust description of the zero sets by elements of cohomotopy groups is in some sense the best possible (Theorem C)

    Výpočetní homotopická teorie

    Get PDF
    of doctoral thesis "Computational Homotopy Theory": We consider several basic problems of algebraic topology, with connections to combinatorial and geometric questions, from the point of view of compu- tational complexity. The extension problem asks, given topological spaces X, Y , a subspace A ⊆ X, and a (continuous) map f : A → Y , whether f can be extended to a map X → Y . For computational purposes, we assume that A, X, Y are represented as finite simplicial complexes and f as a simplicial map. We study the problem under the assumption that, for some d ≥ 1, Y is d- connected, otherwise the problem is undecidable by uncomputability of the fundamental group; We prove that, this problem is still undecidable for dim X = 2d + 2. On the other hand, for every fixed dim X ≤ 2d + 1, we obtain an algorithm that solves the extension problem in polynomial time. We obtain analogous complexity results for the problem of determining the set of homotopy classes of maps X → Y . We also consider the computation of the homotopy groups πk(Y ), k ≥ 2, for a 1-connected Y . Their computability was established by Brown in 1957; we show that πk(Y ) can be computed in polynomial time for every fixed k ≥ 2. On the other hand, we prove that computing πk(Y ) is #P-hard if k is a part of input. It is a strengthening of...dizertační práce "Výpočetní homotopická teorie": Tato práce studuje výpočetní složitost několika základních problémů algebraické topologie, které mají souvislost s otázkami v kombinatorice a výpočetní ge- ometrií. Problém rozšiřitelnosti je zadán topologickými prostory X, Y, podpros- torem A ⊆ X a (spojitým) zobrazením f : A → Y . A otázka je, zda f může být rozšířeno na celý prostor X. Předpokládáme, že X, Y a A jsou zadány jako konečné simpliciální komplexy a f jako simpliciální zobrazení. Výpočetní složitost budeme zkoumat za předpokladu, že Y je d-souvislý pro nějaké d ≥ 1. Jinak je známo, že z teorie grup plyne, že problém rozšiřitel- nosti je nerozhodnutelný. Zde dokážeme, že rozšiřitelnost je i při tomto předpokladu nerozhod- nutelná, pokud dim X dosáhne hodnoty 2d+2. Na druhou stranu pro každou pevnou hodnotu dim X ≤ 2d + 1 nalezneme algoritmus, který řeší problém rozšiřitelnosti v polynomiálním čase. Ukážeme, že složitost výpočtu množiny všech homotopických tříd zo- brazení X → Y má podobnou charakteristiku. Dále uvážíme problém homotopických grup πk(Y ) pro 1-souvislý prostor Y a dimenzi k ≥ 2. První algoritmus na jejich výpočet našel Brown v roce 1957. My ukážeme, že πk(Y ) lze vypočíst v polynomiálním čase pro každou pevnou dimenzi k ≥ 2. Na druhou stranu dokážeme, že výpočet πk(Y ) je...Katedra aplikované matematikyDepartment of Applied MathematicsFaculty of Mathematics and PhysicsMatematicko-fyzikální fakult

    Výpočetní složitost testování rovinnosti grafu

    Get PDF
    In this paper we will show that the problem of planarity testing is in SL (symmetric nondeterministic LOGSPACE). The main part of our proof is a reduction of the problem to planarity of graphs with maximal degree three. Note that usual replacing vertices of degree bigger than three by "little circles" can spoil planarity, we need to be smarter. Planarity of graphs with maximal degree three was already solved in paper "Symmetric complementation" by John Reif. Previously Meena Mahajan and Eric Allender have already proved this in ("Complexity of planarity testing"), but their proof is the pure SL implementation of a parallel algorithm by John Reif and Vijaya Ramachandran ("Planarity testing in parallel"). But it is possibly unnecessarily complex and sophisticated for the purposes of the space complexity. This result together with recent breakthrough by Omer Reingold that SL = L ("Undirected T-connectivity in log-space") completely solves the question of complexity of planarity problem, because planarity is hard for L (it is again shown in "Complexity of planarity testing"). We construct logarithmic-space computable function that converts input graph G into G0 with maximal degree three such that G is planar if and only if G0 is. This together with.V tomto článku ukážeme, že testování planarity je v SL (symetrický nedeterministický LOGSPACE). Hlavní část našeho důkazu je redukce na problém testování rovinnosti grafu s maximálním stupněm tři. Povšiměte si, že obvyklé nahrazování vrchol větších stupňů "malými kružnicemi" může rovinnost pokazit, musíme si počínat šikovněji. Testování rovinnosti grafu s maximálním stupněm tři už bylo vyřešeno ve článku "Symmetric complementation" Johna Reifa. Už dříve Meena Mahajan a Eric Allender ("Complexity of planarity testing") ukázali, že testování rovinnosti je v SL. Jejich důkaz se však sestává z SL implementace velmi složitého paralelního algoritmu od Johna Reifa a Vijayi Ramachandran ("Planarity testing in parallel"). Ten je však nejspíše zbytečně komplikovaný pro účely prostorové složitosti. Tento výsledek spolu s nedávným průlomem Omera Reingolda dokazujícího, že SL = L ("Undirected ST-connectivity in log-space") zcela řeší otázku složitosti testování planarity, protože to je těžké pro L (toto je též dokázáno v "Complexity of planarity testing"). Zkonstruujeme algoritmus používající logaritmický prostor, který převede vstupní graf G na G0 s maximálním stupněm 3 tak, že G je rovinný tehdy a jen tehdy, když G0 je rovinný.Katedra aplikované matematikyDepartment of Applied MathematicsMatematicko-fyzikální fakultaFaculty of Mathematics and Physic

    On the Geometric Ramsey Number of Outerplanar Graphs

    Full text link
    We prove polynomial upper bounds of geometric Ramsey numbers of pathwidth-2 outerplanar triangulations in both convex and general cases. We also prove that the geometric Ramsey numbers of the ladder graph on 2n2n vertices are bounded by O(n3)O(n^{3}) and O(n10)O(n^{10}), in the convex and general case, respectively. We then apply similar methods to prove an nO(log(n))n^{O(\log(n))} upper bound on the Ramsey number of a path with nn ordered vertices.Comment: 15 pages, 7 figure

    Polynomial-Time Homology for Simplicial Eilenberg-MacLane Spaces

    Get PDF
    In an earlier paper of Čadek, Vokřínek, Wagner, and the present authors, we investigated an algorithmic problem in computational algebraic topology, namely, the computation of all possible homotopy classes of maps between two topological spaces, under suitable restriction on the spaces. We aim at showing that, if the dimensions of the considered spaces are bounded by a constant, then the computations can be done in polynomial time. In this paper we make a significant technical step towards this goal: we show that the Eilenberg-MacLane space K(Z,1)K(\mathbb{Z},1) , represented as a simplicial group, can be equipped with polynomial-time homology (this is a polynomial-time version of effective homology considered in previous works of the third author and co-workers). To this end, we construct a suitable discrete vector field, in the sense of Forman's discrete Morse theory, on K(Z,1)K(\mathbb{Z},1) . The construction is purely combinatorial and it can be understood as a certain procedure for reducing finite sequences of integers, without any reference to topology. The Eilenberg-MacLane spaces are the basic building blocks in a Postnikov system, which is a "layered” representation of a topological space suitable for homotopy-theoretic computations. Employing the result of this paper together with other results on polynomial-time homology, in another paper we obtain, for every fixed k, a polynomial-time algorithm for computing the kth homotopy group π k (X) of a given simply connected space X, as well as the first k stages of a Postnikov system forX, and also a polynomial-time version of the algorithm of Čadek etal. mentioned abov

    Computing all maps into a sphere

    Full text link
    Given topological spaces X and Y, a fundamental problem of algebraic topology is understanding the structure of all continuous maps X -> Y . We consider a computational version, where X, Y are given as finite simplicial complexes, and the goal is to compute [X,Y], i.e., all homotopy classes of such maps. We solve this problem in the stable range, where for some d >= 2, we have dim X <= 2d - 2 and Y is (d - 1)-connected; in particular, Y can be the d-dimensional sphere S^d. The algorithm combines classical tools and ideas from homotopy theory (obstruction theory, Postnikov systems, and simplicial sets) with algorithmic tools from effective algebraic topology (locally effective simplicial sets and objects with effective homology). In contrast, [X,Y] is known to be uncomputable for general X,Y, since for X = S^1 it includes a well known undecidable problem: testing triviality of the fundamental group of Y. In follow-up papers, the algorithm is shown to run in polynomial time for d fixed, and extended to other problems, such as the extension problem, where we are given a subspace A of X and a map A -> Y and ask whether it extends to a map X -> Y, or computing the Z_2-index---everything in the stable range. Outside the stable range, the extension problem is undecidable.Comment: 42 pages; a revised and substantially updated version (referring to follow-up papers and results

    Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE

    No full text
    Výpočetní složitost testování rovinnosti grafu Katedra aplikované matematik

    Computational Homotopy Theory

    No full text
    of doctoral thesis "Computational Homotopy Theory": We consider several basic problems of algebraic topology, with connections to combinatorial and geometric questions, from the point of view of compu- tational complexity. The extension problem asks, given topological spaces X, Y , a subspace A ⊆ X, and a (continuous) map f : A → Y , whether f can be extended to a map X → Y . For computational purposes, we assume that A, X, Y are represented as finite simplicial complexes and f as a simplicial map. We study the problem under the assumption that, for some d ≥ 1, Y is d- connected, otherwise the problem is undecidable by uncomputability of the fundamental group; We prove that, this problem is still undecidable for dim X = 2d + 2. On the other hand, for every fixed dim X ≤ 2d + 1, we obtain an algorithm that solves the extension problem in polynomial time. We obtain analogous complexity results for the problem of determining the set of homotopy classes of maps X → Y . We also consider the computation of the homotopy groups πk(Y ), k ≥ 2, for a 1-connected Y . Their computability was established by Brown in 1957; we show that πk(Y ) can be computed in polynomial time for every fixed k ≥ 2. On the other hand, we prove that computing πk(Y ) is #P-hard if k is a part of input. It is a strengthening of..

    Computational Homotopy Theory

    No full text
    of doctoral thesis "Computational Homotopy Theory": We consider several basic problems of algebraic topology, with connections to combinatorial and geometric questions, from the point of view of compu- tational complexity. The extension problem asks, given topological spaces X, Y , a subspace A ⊆ X, and a (continuous) map f : A → Y , whether f can be extended to a map X → Y . For computational purposes, we assume that A, X, Y are represented as finite simplicial complexes and f as a simplicial map. We study the problem under the assumption that, for some d ≥ 1, Y is d- connected, otherwise the problem is undecidable by uncomputability of the fundamental group; We prove that, this problem is still undecidable for dim X = 2d + 2. On the other hand, for every fixed dim X ≤ 2d + 1, we obtain an algorithm that solves the extension problem in polynomial time. We obtain analogous complexity results for the problem of determining the set of homotopy classes of maps X → Y . We also consider the computation of the homotopy groups πk(Y ), k ≥ 2, for a 1-connected Y . Their computability was established by Brown in 1957; we show that πk(Y ) can be computed in polynomial time for every fixed k ≥ 2. On the other hand, we prove that computing πk(Y ) is #P-hard if k is a part of input. It is a strengthening of..
    corecore